Answer: The axis of symmetry is x=1.
Explanation:
The given function is,
[tex]g(x)=5x^2-10x+7[/tex]
The degree of the equation is 2. SInce it is a quadratic function therefore the graph of the function is a parabola.
The axis of symmetry of a parabolic function [tex]f(x)=ax^2+bx+c[/tex] is a vertical line,
[tex]x=-\frac{b}{2a}[/tex]
Since the value of a is 5m b is -10 and c is 7, So the axis of symmetry is,
[tex]x=-\frac{(-10)}{2(5)}[/tex]
[tex]x=\frac{10}{10}[/tex]
[tex]x=1[/tex]
Therefore, the axis of symmetry is x=1.