Respuesta :

Answer: The function has the end behavior [tex]f(x)\rightarrow -\infty[/tex]  as [tex]x\rightarrow -\infty[/tex], [tex]f(x)\rightarrow +\infty[/tex]  as [tex]x\rightarrow +\infty[/tex]

Explanation:

Since,  The end behavior of a polynomial function is the behavior of the graph of f(x) as x approaches positive infinity or negative infinity.

The degree and the leading coefficient of a polynomial function determine the end behavior of the graph.  And, if the function has  positive leading coefficient with odd degree then its end behavior is [tex]f(x)\rightarrow -\infty[/tex]  as [tex]x\rightarrow -\infty[/tex], [tex]f(x)\rightarrow +\infty[/tex]  as [tex]x\rightarrow +\infty[/tex]

Here, The given function has positive leading coefficient with odd degree.


Therefore,  by the definition of end behavior of a function,

The function has the end behavior [tex]f(x)\rightarrow -\infty[/tex]  as [tex]x\rightarrow -\infty[/tex]

And, [tex]f(x)\rightarrow +\infty[/tex]  as [tex]x\rightarrow +\infty[/tex]



Answer:

The graph of the function starts low and ends high

Step-by-step explanation:

a p e x