Respuesta :
Distance between stations = 1180 m
We have v = u+at
When the train is accelerating v = 0+0.100*δt1 = 0.1δt1
When the train is decelerating 0 = 0.1δt1 - 0.350*δt2
So δt1 = 3.5 δt2
Now we have s = ut + [tex]\frac{1}{2} at^2[/tex]
For the accelerating part
S1 = 0*δt1 + [tex]\frac{1}{2}*0.1* (\delta t1)^2 = 0.05* (\delta t1)^2[/tex]
For the decelerating part
S2 = [tex]0.1* \delta t1*\delta t2-\frac{1}{2}* 0.35*(\delta t2)^2[/tex]
We have S1+S2 = 1180
[tex]1180 = 0.05*(\delta t1)^2+0.1(\delta t1)(\delta t2) - \frac{1}{2}*0.35*(\delta t2)^2\\ \\ 1180 = 0.6125*(\delta t2)^2+0.35* (\delta t2)^2-0.175*(\delta t2)^2\\ \\ 0.7875*(\delta t2)^2 = 1180\\ \\ \delta t2 = 38.71 seconds\\ \\ \delta t1 = 135.485 seconds\\ \\ \delta t = 174.195seconds[/tex]