[tex]2.=c.\\\\2\sin4x\cos4x=2\sin(2\cdot4x)=2\sin8x\\\\Used:\\\sin2\alpha=2\sin\alpha\cos\alpha[/tex]
[tex]1.=b.\\\\\csc x-\sin x=\dfrac{1}{\sin x}-\dfrac{\sin^2x}{\sin x}=\dfrac{1-\sin^2x}{\sin x}=\dfrac{\cos^2x}{\sin x}\\\\=\dfrac{\cos x\cos x}{\sin x}=\cos x\cdot\dfrac{\cos x}{\sin x}=\cos x\cot x\\\\Used:\\\csc x=\dfrac{1}{\sin x}\\\\\sin^2x+\cos^2x=1\to\cos^2x=1-\sin^2x\\\\\cot x=\dfrac{\cos x}{\sin x}[/tex]
[tex]3.=a.\\\\\dfrac{\sin x-1}{\sin x+1}=\dfrac{\sin x-1}{\sin x+1}\cdot\dfrac{\sin x+1}{\sin x+1}=\dfrac{\sin^2x-1^2}{(\sin x+1)^2}=\dfrac{\sin^2x-1}{(\sin x+1)^2}\\\\=\dfrac{-(1-\sin^2x)}{(\sin x+1)^2}=\dfrac{-\cos^2x}{(\sin x+1)^2}\\\\Used:\\(a-b)(a+b)=a^2-b^2\\\\\sin^2x+\cos^2x=1\to \cos^2x=1-\sin^2x[/tex]