If [tex]A(t)[/tex] is the amount of salt in the tank at time [tex]t[/tex], then the rate at which this amount changes over time is given by the ODE
[tex]A'(t)=\dfrac{3\text{ gal}}{1\text{ min}}\cdot\dfrac{5\text{ lb}}{1\text{ gal}}-\dfrac{3\text{ gal}}{1\text{ min}}\cdot\dfrac{A(t)\text{ lb}}{300+(3-3)t\text{ gal}}[/tex]
[tex]A'(t)+\dfrac1{100}A(t)=15[/tex]
We're told that the tank initially starts with no salt in the water, so [tex]A(0)=0[/tex].
Multiply both sides by an integrating factor, [tex]e^{t/100}[/tex]:
[tex]e^{t/100}A'(t)+\dfrac1{100}e^{t/100}A(t)=15e^{t/100}[/tex]
[tex]\left(e^{t/100}A(t)\right)'=15e^{t/100}[/tex]
[tex]e^{t/100}A(t)=1500e^{t/100}+C[/tex]
[tex]A(t)=1500+Ce^{-t/100}[/tex]
Since [tex]A(0)=0[/tex], we have
[tex]0=1500+C\implies C=-1500[/tex]
so that the amount of salt in the tank over time is given by
[tex]A(t)=1500(1-e^{-t/100})[/tex]
After 10 minutes, the amount of salt in the tank is
[tex]A(10)=1500(1-e^{-1/10})\approx142.74\text{ lb}[/tex]