Respuesta :
[tex]\dfrac{5x-20}{x^{2}-2x-8}=\dfrac{5(x-4)}{(x+2)(x-4)}[/tex]
The greatest common factor of numerator and denominator is (x-4).
The greatest common factor of numerator and denominator is (x-4).
ANSWER
[tex](x - 4)[/tex]
EXPLANATION
The given rational expression is
[tex] \frac{5x - 20}{ {x}^{2} - 2x - 8} [/tex]
The numerator of the given rational expression is
[tex]5x - 20 = 5(x - 4)[/tex]
and the denominator is
[tex] {x}^{2} - 2x - 8[/tex]
We factor the denominator to obtain;
[tex] = {x}^{2} - 4x + 2x - 8[/tex]
[tex] = x(x - 4) + 2(x - 4)[/tex]
[tex] = (x + 2)(x - 4)[/tex]
The greatest common factor of the numerator and the denominator is
[tex](x - 4)[/tex]
[tex](x - 4)[/tex]
EXPLANATION
The given rational expression is
[tex] \frac{5x - 20}{ {x}^{2} - 2x - 8} [/tex]
The numerator of the given rational expression is
[tex]5x - 20 = 5(x - 4)[/tex]
and the denominator is
[tex] {x}^{2} - 2x - 8[/tex]
We factor the denominator to obtain;
[tex] = {x}^{2} - 4x + 2x - 8[/tex]
[tex] = x(x - 4) + 2(x - 4)[/tex]
[tex] = (x + 2)(x - 4)[/tex]
The greatest common factor of the numerator and the denominator is
[tex](x - 4)[/tex]