Determine whether each set of measures can be sides of right triangle. Then determine whether they form a Pythagorean triple.
4. 11, 18, 21
5. 21, 72, 75
6. 7, 8, 11
7. 9, 10, √161
8. 9, 2 √10 , 11
9. √7 , 2 √2 , √15

Respuesta :

⇒ Pythagorean triple
 
Pythagorean triple are set of positive integers. All sums are positive. The [tex] c^{2} [/tex] is the longest side of a triangle. 
 
[tex]a^{2} [/tex] + [tex]b^{2} [/tex] = [tex] c^{2} [/tex]


______________________________________

 11, 18, 21 
This can`t be a right triangle. They do not form a Pythagorean Triple.

⇒ 21, 72, 75 
This can be a right triangle. It forms a Pythagorean Triple.  

 7, 8, 11 
This can not be a right triangle. It does not form a Pythagorean Triple.

⇒ 9, 10, √161 
This can not be a right triangle, It is not a Pythagorean Triple.

⇒  9, 2 √10 , 11  
This can not be a right triangle. It is not a Pythagorean Triple 

 ⇒ √7 , 2 √2 , √15 
This can not be a right triangle. It is not a 
Pythagorean Triple .

I used the formula a^2+b^2=c^2

The biggest number is c, and it doesn't matter which one is a or b.

4.11, 18, 21 
No,no

5.21, 72, 75 
Yes,yes

6.7, 8, 11 
No,no

7. 10, √161 
No,no

8.9, 2 √10 , 11  
No,no 

9.√7 , 2 √2 , √15 
No,no