Which of the following exponential functions goes through the points (1, 6) and (2, 12)?

f(x) = 3(2)x
f(x) = 2(3)x
f(x) = 3(2)−x
f(x) = 2(3)−x

Respuesta :

Answer

[tex]f(x)=3(2)^x[/tex]

Explanation

To solve this, we re using the standard exponential equation: [tex]f(x)=ab^x[/tex]

Also, remember that [tex]f(x)=y[/tex]

We know that our exponential function goes through the points (1, 6) and (2, 12), so we are going to replace the points in our stander exponential equation and solve for [tex]a[/tex] and [tex]b[/tex]:

For (1, 6)

[tex]x=1[/tex] and [tex]y/f(x)=6[/tex], so:

[tex]f(x)=ab^x[/tex]

[tex]6=ab^1[/tex]

[tex]6=ab[/tex]

[tex]a=\frac{6}{b}[/tex] equation (1)

For (2, 12)

[tex]x=2[/tex] and [tex]y/f(x)=12[/tex], so:

[tex]f(x)=ab^x[/tex]

[tex]12=ab^2[/tex] equation (2)

Replace equation (1) in equation (2) and solve for b

[tex]12=ab^2[/tex]

[tex]12=(\frac{6}{b}) b^2[/tex]

[tex]12=6b[/tex]

[tex]b=\frac{12}{6}[/tex]

[tex]b=2[/tex] equation (3)

Replace equation (3) in equation (1) to find a

[tex]a=\frac{6}{b}[/tex]

[tex]a=\frac{6}{2}[/tex]

[tex]a=3[/tex]

Now we can complete our exponential function:

[tex]f(x)=ab^x[/tex]

[tex]f(x)=3(2)^x[/tex]

We can conclude that the exponential function that goes through the points (1, 6) and (2, 12) is [tex]f(x)=3(2)^x[/tex]