If the circumference of the circular base of a cylinder is doubled, how does the volume of the cylinder change? A) The volume doubled. B) The volume tripled. C) The volume quadrupled. D) The volume is eight times larger.

Respuesta :

1rstar
[tex]VOLUMES \\ \\ \\ As \: we \: know \: , \: \: \\ \\ Volume \: of \: cylinder \: = \pi {r}^{2} h \\ \\ Where \: ,\\ \\ r \: is \: the \: radius \: W
while \\ h \: is \: the \: height \: of \: the \: cylinder \\ \\ Circumference \: of \: base \: = \: 2 \times \pi \times r \\ \\ As \: 2 \: and \: pi \: are \: constant \: , \: Circumference \: can \: only \\ change \: when \: r \: is \: changed \\ \\ As \: circumference \: got \: doubled \: \\ means \: radius \: got \: twice \\ \\ New \: volume \: = \: \pi {(2r)}^{2} h = 4\pi {r}^{2} h \\ \\ \\ Hence \: , \: the \: volume \: got \: \\ quadrupled \: or \: 4 \: times \: more[/tex]