Respuesta :

B is your answer because if you check each one in the calculator B is the same as the expression and also 2^8 makes up the first part and the second half makes up the .24

Answer:

[tex]2^{8}\cdot 2^{\frac{2}{10}}\cdot 2^{\frac{4}{100}}[/tex]

B is correct

Step-by-step explanation:

Given: [tex]2^{8.24}[/tex]

Using exponent law,

[tex]x^{a+b}=x^a\cdot x^b[/tex]

Expand exponent 8.24

Position of each digit:

8 ⇒ It is at tens place (1 x 8)

2 ⇒ It is at tenth place (1/10 x 2)

4 ⇒ It is at hundredth place (1/100 x 4 )

[tex]8.24=8+.2+.04[/tex]

[tex]8.24=8+\dfrac{2}{10}+\dfrac{4}{100}[/tex]

[tex]2^{8.24}=2^{8+\frac{2}{10}+\frac{4}{100}}[/tex]

Using exponent law

[tex]2^{8.24}=2^{8}\cdot 2^{\frac{2}{10}}\cdot 2^{\frac{4}{100}}[/tex]

Hence, The equivalent expression is [tex]2^{8}\cdot 2^{\frac{2}{10}}\cdot 2^{\frac{4}{100}}[/tex]