Respuesta :
Answer:
19.4
Step-by-step explanation:
Given data,
50, 15, 31, 27, 11, 42, 71,
Let x represents the score,
Here, the number of scores, n = 7,
Thus, the mean score is,
[tex]\bar{x}=\frac{50 + 15 + 31 + 27 + 11 + 42 + 71}{7}=\frac{247}{7}[/tex]
Hence, the standard deviation of the given data is,
[tex]\sigma = \sqrt{\frac{\sum (x-\bar{x})^2}{n}}[/tex]
[tex]=\sqrt{\frac{\sum(x-\frac{247}{7})^2}{7}}[/tex]
[tex]=\sqrt{2625.4285714286}{7}}[/tex]
[tex]=\sqrt{375.0612244898}[/tex]
[tex]=19.366497476\approx 19.4[/tex]