The order doesn't matter.
[tex]k [/tex] objects can be chosen out of [tex] n [/tex] objects, when the order doesn't matter, in [tex] C(n,k)=\dfrac{n!}{k!(n-k)!} [/tex] ways.
So, the answer is [tex] C(5,2)\cdot C(10,4)=\dfrac{5!}{2!3!}\cdot\dfrac{10!}{4!6!}=\dfrac{4\cdot5}{2}\cdot\dfrac{7\cdot8\cdot9\cdot10}{2\cdot3\cdot4}=2,100 [/tex] ways.