Respuesta :

The domain is all real numbers.

The range is all real numbers less than or equal to 4.
Ver imagen sqdancefan

we have

[tex]f(x)=-(x+3)(x-1)[/tex]

[tex]f(x)=-(x^{2} -x+3x-3) \\ \\f(x)=-(x^{2} +2x-3)\\ \\f(x)=-x^{2}-2x+3[/tex]

Convert into vertex form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)-3=-(x^{2}+2x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]f(x)-3-1=-(x^{2}+2x+1)[/tex]

[tex]f(x)-4=-(x^{2}+2x+1)[/tex]

Rewrite as perfect squares

[tex]f(x)-4=-(x+1)^{2}[/tex]

[tex]f(x)=-(x+1)^{2}+4[/tex] -------> equation in vertex form

This is the equation of a vertical parabola open down

The vertex is a maximum---------> [tex](-1,4)[/tex]

therefore

the domain of the function is the interval---------> (-∞,∞)

Domain is all real numbers

The range of the function is the interval --------> (-∞,4]

Range is all real number less than or equal to [tex]4[/tex]

Using a graphing tool

see the attached figure to better understand the problem


Ver imagen calculista