contestada

A parabola has a vertex (2,6) and passes through the point (1,8) what is the equation of this parabola in form y=a(x-h)2 +k?

Respuesta :

[tex]\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} \boxed{y=a(x- h)^2+ k}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{}{ h},\stackrel{}{ k})\\\\ -------------------------------\\\\ \begin{cases} h=2\\ k=6 \end{cases}\implies y=a(x-2)^2+6 \\\\\\ \textit{we also know that } \begin{cases} x=1\\ y=8 \end{cases}\implies 8=a(1-2)^2+6\implies 2=a(-1)^2 \\\\\\ 2=a\qquad therefore\qquad y=2(x-2)^2+6[/tex]