Respuesta :
Use Negative Power Rule: {x}^{-a}=\frac{1}{{x}^{a}}x−a=xa1
\frac{1}{{6}^{2}}621
2 Simplify {6}^{2}62 to 3636
\frac{1}{36}361
Done
\frac{1}{{6}^{2}}621
2 Simplify {6}^{2}62 to 3636
\frac{1}{36}361
Done
Decimal Form: 0.027778
Answer:
[tex]\frac{1}{36}[/tex]
Step-by-step explanation:
The given expression is [tex]6^{-2}[/tex]
We can use the exponent property to simplify this expression.
Rule: [tex]x^{-a}=\frac{1}{x^a}[/tex]
Applying this rule, we get
[tex]6^{-2}\\\\=\frac{1}{6^2}[/tex]
On simplifying the denominator
[tex]\frac{1}{6^2}\\\\=\frac{1}{36}[/tex]
Therefore, the simplified expression is [tex]\frac{1}{36}[/tex]