Respuesta :

You know that [tex]y^2=4x[/tex] so [tex]x=\dfrac{y^2}{4}[/tex].
Area of a shaded region is:

[tex]$A=\int\limits_0^k\dfrac{y^2}{4}\,dy=\frac{1}{4}\int\limits_0^ky^2\,dy=\frac{1}{4}\left[\frac{y^3}{3}\right]_0^k=\frac{1}{4}\left[\frac{k^3}{3}-\frac{0^3}{3}\right]=\frac{1}{4}\cdot\dfrac{k^3}{3}=\boxed{\frac{k^3}{12}} [/tex]

so k:

[tex]\dfrac{k^3}{12}=\dfrac{9}{4}\\\\\\k^3=\dfrac{9\cdot12}{4}\\\\\\k^3=9\cdot3\\\\k^3=3^3\quad|\sqrt[3]{(\ldots)}\\\\\boxed{k=3}[/tex]