Respuesta :

The cross product of the normal vectors of two planes result in a vector parallel to the line of intersection of the two planes.

Corresponding normal vectors of the planes are
<5,-1,-6> and <1,1,1>

We calculate the cross product as a determinant of (i,j,k) and the normal products

    i   j   k
   5 -1 -6
   1  1  1

=(-1*1-(-6)*1)i -(5*1-(-6)1)j+(5*1-(-1*1))k
=5i-11j+6k
=<5,-11,6>

Check orthogonality with normal vectors using scalar products
(should equal zero if orthogonal)
<5,-11,6>.<5,-1,-6>=25+11-36=0
<5,-11,6>.<1,1,1>=5-11+6=0

Therefore <5,-11,6> is a vector parallel to the line of intersection of the two given planes.