Respuesta :

f(x) = (x +1/2)² +3/4
Ver imagen sqdancefan

Answer:

The function in vertex form is  [tex]f(x)=(x-(-\frac{1}{2}))^2+\frac{3}{4}[/tex]  

Step-by-step explanation:

Given: Function  [tex]f(x)=x^2+x+1[/tex]  

We have to write the given function  [tex]f(x)=x^2+x+1[/tex] in vertex form.

Consider the given function [tex]f(x)=x^2+x+1[/tex]  

Using algebraic identity [tex](a+b)^2=a^2+b^2+2ab[/tex]

Comparing a = x , 2ab = x

Also, 2b = 1 ⇒[tex] b=\frac{1}{2}[/tex]

Add and subtract [tex]b^2=\frac{1}{4}[/tex] , we get,

[tex]f(x)=x^2+x+1+\frac{1}{4}-\frac{1}{4}[/tex]  

Simplify, we have,

[tex]f(x)=(x+\frac{1}{2})^21-\frac{1}{4}[/tex]  

Simplify, we have,

[tex]f(x)=(x+\frac{1}{2})^2+\frac{3}{4}[/tex]  

Thus, The function in vertex form is  [tex]f(x)=(x-(-\frac{1}{2}))^2+\frac{3}{4}[/tex]