Respuesta :

Answer:

[tex]y=2(x+\frac{7}{2})^2+\frac{1}{2}[/tex] vertex form

Step-by-step explanation:

[tex]y = (x + 3)^2 + (x + 4)^2[/tex]

Lets square the terms

[tex](x+3)^2=x^2+6x+9[/tex]

[tex](x+4)^2= x^2+8x+16[/tex]

[tex]y = x^2+6x+9 +x^2+8x+16=2x^2+14x+25[/tex]

Now use completing the square method to get the vertex form

to apply the method we need to take out 2

WE take middle term , divide it by 2 and square it . then add and subtract it

[tex]y =2(x^2+7x)+25[/tex]

[tex]\frac{7}{2}[/tex]

square it [tex]\frac{49}{4}[/tex]

Add and subtract the fraction

[tex]y=2(x^2+7x+\frac{49}{4}-\frac{49}{4})+25[/tex]

Take out -49/4 and multiply with 2 , then add it with 25

[tex]y=2(x^2+7x+\frac{49}{4})-\frac{49}{2}+25[/tex]

[tex]y=2(x^2+7x+\frac{49}{4})+\frac{1}{2}[/tex]

[tex]y=2(x+\frac{7}{2})^2+\frac{1}{2}[/tex]

Answer: B on edge 2020.

Step-by-step explanation: