Can someone help me with some algebra?
What is the oblique asymptote of the function f(x) = the quantity x squared plus 5x plus 6 over the quantity x minus 4?

y = x + 9
y = x − 9
y = x + 1
y = x − 1
thanks :)))

Respuesta :

1rstar
★ Oblique Asymptote ★

[tex]f(x) = \frac{x {}^{2} + 5x + 6}{x - 4} \\ f(x) = (x - 4)(x + 9) + 42 \\ [/tex]
Hence , oblique Asymptote is obtained simultaneously by the Quotient of the function obtained ,
HENCE , oblique Asymptote is
[tex]y = x + 9[/tex]

Answer:

y=x+9.

Step-by-step explanation:

the function is [tex]\frac{x^{2}+5x+6}{x-4}[/tex]. Now, the equation of the oblique asymptote is a function y= mx + b where

m = [tex]\lim_{x \to \infty} \frac{f(x)}{x}[/tex]

and b = [tex]\lim_{x \to \infty} f(x)-mx[/tex]

So,

m =  [tex]\lim_{x \to \infty} \frac{\frac{x^{2}+5x+6}{x-4}}{x} [/tex]

= [tex]\lim_{x \to \infty} \frac{x^{2}+5x+6}{x^{2}-4x}= 1.[/tex]

and,

b = [tex]\lim_{x \to \infty}\frac{x^{2}+5x+6}{x-4}-x[/tex]

=  [tex]\lim_{x \to \infty}\frac{x^{2}+5x+6-x^{2}+4x}{x-4}[/tex]

=  [tex]\lim_{x \to \infty}\frac{9x+6}{x-4}= 9.[/tex]

Then, the equation of the oblique asymptote is y= x+9.