Use the identity below to complete the tasks: a3 + b3 = (a + b)(a2 - ab + b2) Use the identity for the sum of two cubes to factor 8q6r3 + 27s6t3. What is a? What is b? Factor the expression. es003-1.jpg es003-2.jpg es004-1.jpg es005-1.jpg es006-1.jpg

Respuesta :

a is 2q^2r

b is 3s^2t

the expression factored is...

(2q^2r+3s^2t)(4q^4r^2-6q^2rs^2t+9s^4t^2)

aksnkj

The given expression is a sum of two cubes. The factorization of the given expression is [tex](2q^2r+3s^2t)(4q^4r^2-6q^2rs^2t+9s^4t^2)[/tex].

Given:

The given identity is, [tex]a^3 + b^3 = (a + b)(a^2 - ab + b^2)[/tex].

It is required to factorize [tex]8q^6r^3 + 27s^6t^3[/tex] using the given identity.

The given expression can be written in the form of sum of two cubes as,

[tex]8q^6r^3 + 27s^6t^3=2^3q^6r^3 + 3^3s^6t^3\\=(2q^2r)^3+(3s^2t)^3[/tex]

Here, a and b are [tex]2q^2r[/tex] and [tex]3s^2t[/tex] respectively.

Now, the factorization of the given expression can be one as,

[tex]a^3 + b^3 = (a + b)(a^2 - ab + b^2)\\(2q^2r)^3+(3s^2t)^3=(2q^2r+3s^2t)((2q^2r)^2-(2q^2r)(3s^2t)+(3s^2t)^2)\\=(2q^2r+3s^2t)(4q^4r^2-6q^2rs^2t+9s^4t^2)[/tex]

Therefore, the factorization of the given expression is [tex](2q^2r+3s^2t)(4q^4r^2-6q^2rs^2t+9s^4t^2)[/tex].

For more details, refer to the link:

https://brainly.com/question/11994048