Respuesta :

Answer:  [tex]\frac{8}{17}[/tex] or 8:17

Step-by-step explanation:

For any angle x (other than right angle) in a right triangle ,the trigonometric ratio of sin x is given by :-

[tex]\sin x=\frac{\text{side opposite to x}}{\text{Hypotenuse}}[/tex]

Given: A right triangle with hypotenuse = 68 units

The side adjacent to S =  60

Let h be the side opposite to S, then using Pythagoras in the given right triangle, we get

[tex](68)^2=60^2+h^2\\\\\Rightarrow\ h^2=68^2-60^2\\\\\Rightarrow\ h^2=1024\\\\\Rightarrow\ h=\sqrt{1024}=32[/tex]

Thus, the side opposite to S = 32 units

Now,  the trigonometric ratio for sin S is given by :-

[tex]\sin S=\frac{\text{side opposite to S}}{\text{Hypotenuse}}\\\\\Rightarrow\sin S=\frac{32}{68}=\frac{8}{17}[/tex]

Hence, the  trigonometric ratio for sin S =[tex]\frac{8}{17}[/tex] or 8:17

Answer:

   8/17

explanation:

I took the quiz