Respuesta :

The 3rd selection is appropriate.

___
(1/5)(5x) = x, so the inverse transformation returns the original. Not so for the other choices.

Answer:  The correct option is

(C) [tex]T^{-1}(x,y)\rightarrow \left(\dfrac{1}{5}x,\dfrac{1}{5}y\right).[/tex]

Step-by-step explanation:  We are given a transformation T defined as :

[tex]T:(x,y)\rightarrow (5x,5y).[/tex]

We are to find the inverse transformation [tex]T^{-1}(x,y).[/tex]

From the given transformation, we have

[tex]T:(x,y)\rightarrow (5x,5y)\\\\\Rightarrow T^{-1}(5x,5y)=(x,y).[/tex]

Let us consider that

[tex]5x=z~~~~~~\Rightarrow x=\dfrac{z}{5},\\\\\\5y=t~~~~~~\Rightarrow y=\dfrac{t}{5}.[/tex]

Therefore, we get

[tex]T^{-1}(5x,5y)\rightarrow(x,y)\\\\\Rightarrow T^{-1}(z,t)\rightarrow \left(\dfrac{z}{5},\dfrac{t}{5}\right)\\\\\\\Rightarrow T^{-1}(x,y)\rightarrow \left(\dfrac{1}{5}x,\dfrac{1}{5}y\right).[/tex]

Thus, (C) is the correct option.