Respuesta :

Step 1    

Find the value of TS

we know that

if PQ is parallel to RS. then triangles TRS and TPQ are similar

so

[tex]\frac{TR}{TP} =\frac{TS}{QT}[/tex]

solve for TS

[tex]TS =\frac{TR*QT}{TP}[/tex]

we have

[tex]RP=2\ cm\\TP=18\ cm\\QT=27\ cm[/tex]

[tex]TR=TP+RP\\TR=18+2=20\ cm[/tex]

substitute

[tex]TS =\frac{20*27}{18}[/tex]  

[tex]TS =30\ cm[/tex]

Step 2

Find the value of SQ

we know that

[tex]SQ=TS-QT[/tex]

we have

[tex]TS =30\ cm[/tex]

[tex]QT=27\ cm[/tex]

substitute

[tex]SQ=30\ cm-27\ cm=3\ cm[/tex]

therefore

the answer is

the value of SQ is [tex]3\ cm[/tex]

Answer: C. 3cm

Step-by-step explanation: