Respuesta :

1. Commutative Property of Addition.a + b = b + a 

Examples: 

1. real numbers 

2 + 3 = 3 + 2 

2. algebraic expressions 

x
 2 + x = x + x 2

2. Commutative Property of Multiplication.a * b = b * a 

Examples: 

1. real numbers 

5 * 7 = 7 * 5 

2. algebraic expressions 

(x
 3 - 2) * x = x * (x 3 - 2) 

3. Associative Property of Addition.(a + b) + c = a + (b + c) 

Examples: 

1. real numbers 

(2 + 3) + 6 = 2 + (3 + 6) 

2. algebraic expressions 

(x
 3 + 2 x) + x = x 3 + (2 x + x) 

4. Associative Property of Multiplication.(a * b) * c = a * (b * c) 

Examples: 

1. real numbers 

(7 * 3) * 10 = 7 * (3 * 10) 

2. algebraic expressions 

(x
 2 * 5 x) * x = x 2 * (5 x * x) 

5. Distributive Properties of Addition Over Multiplication.a * (b + c) = a * b + a * c 
and 
(a + b) * c = a * c + b * c 

Examples: 

1. real numbers 

2 * (2 + 8) = 2 * 2 + 2 * 8 

(2 + 8) * 10 = 2 * 10 + 8 * 10 

2. algebraic expressions 

x * (x 4 + x) = x * x 4 + x * x 

(x 4 + x) x 2 = x 4 * x 2 + x * x 2

6. The reciprocal of a non zero real number a is 1/a.and a*(1/a) = 1 

Examples: 

1. real numbers 

reciprocal of 5 is 1/5 and 5*(1/5) = 1 

7. The additive inverse of a is -a.a + (- a) = 0 

Examples: 

additive inverse of -6 is -(-6) = 6 and - 6 + (6) = 0 

8. The additive identity is 0. and a + 0 = 0 + a = a 

9. The multiplicative identity is 1.and a * 1 = 1 * a = a