Answer:
Option 1. is correct
Step-by-step explanation:
To find: the coordinates for point A
Solution:
From the graph, we can see coordinates of A = [tex]\left ( -2,1 \right )[/tex]
To find: Option which is not appropriate .
Solution:
For two points [tex]\left ( x_1,y_1 \right )\,,\,\left ( x_2,y_2 \right )[/tex], distance is given by [tex]d=\sqrt{\left ( x_2-x_1 \right )^2+\left ( y_2-y_1 \right )^2}[/tex]
For AB,
[tex]\left ( x_1,y_1 \right )=\left ( -2,1 \right )\,,\,\left ( x_2,y_2 \right )=\left ( 1,3 \right )[/tex]
[tex]AB=\sqrt{\left ( 1+2 \right )^2+\left ( 3-1 \right )^2}=\sqrt{9+4}=\sqrt{13}[/tex]
For BC,
[tex]\left ( x_1,y_1 \right )=\left ( 1,3 \right )\,,\,\left ( x_2,y_2 \right )=\left ( 4,1 \right )[/tex]
[tex]BC=\sqrt{\left ( 4-1 \right )^2+\left ( 1-3 \right )^2}=\sqrt{9+4}=\sqrt{13}[/tex]
For AC,
[tex]\left (x_1,y_1 \right )=\left ( -2,1 \right )\,,\,\left ( x_2,y_2 \right )=\left ( 4,1 \right )\\C=\sqrt{\left ( 4+2 \right )^2+\left ( 1-1 \right )^2}=\sqrt{36}=6[/tex]
So, AB = BC i.e, two sides are equal . Therefore, the given triangle can not be right equilateral as in equilateral triangle , all sides are equal .
Option 1. is correct