Translate triangle ABC 2 units left and 3 units up

What are the coordinates for point A?
1.(-5, 3)
2.(-4, 4)
3.-(-4, -2)
4.(0, 4)
~
Which is NOT an appropriate classification for a triangle?
1.right equilateral
2. acute scalene
3.obtuse isosceles
4.right scalene



Translate triangle ABC 2 units left and 3 units up What are the coordinates for point A 15 3 24 4 34 2 40 4 Which is NOT an appropriate classification for a tri class=

Respuesta :

1) Point A will be at (-4,4)
2) I think an equilateral triangle can't be right triangle

Answer:

Option 1. is correct

Step-by-step explanation:

To find: the coordinates for point A

Solution:

From the graph, we can see coordinates of A = [tex]\left ( -2,1 \right )[/tex]

To find: Option which is not  appropriate .

Solution:

For two points [tex]\left ( x_1,y_1 \right )\,,\,\left ( x_2,y_2 \right )[/tex], distance is given by [tex]d=\sqrt{\left ( x_2-x_1 \right )^2+\left ( y_2-y_1 \right )^2}[/tex]

For AB,

[tex]\left ( x_1,y_1 \right )=\left ( -2,1 \right )\,,\,\left ( x_2,y_2 \right )=\left ( 1,3 \right )[/tex]

[tex]AB=\sqrt{\left ( 1+2 \right )^2+\left ( 3-1 \right )^2}=\sqrt{9+4}=\sqrt{13}[/tex]

For BC,

[tex]\left ( x_1,y_1 \right )=\left ( 1,3 \right )\,,\,\left ( x_2,y_2 \right )=\left ( 4,1 \right )[/tex]

[tex]BC=\sqrt{\left ( 4-1 \right )^2+\left ( 1-3 \right )^2}=\sqrt{9+4}=\sqrt{13}[/tex]

For AC,

[tex]\left (x_1,y_1 \right )=\left ( -2,1 \right )\,,\,\left ( x_2,y_2 \right )=\left ( 4,1 \right )\\C=\sqrt{\left ( 4+2 \right )^2+\left ( 1-1 \right )^2}=\sqrt{36}=6[/tex]

So, AB = BC i.e, two sides are equal . Therefore, the given triangle can not be right equilateral as in equilateral triangle , all sides are equal .

Option 1. is correct