Respuesta :

Answer:

6163.2 years

Step-by-step explanation:

The formula we use for evaluating the C 14 decay is

[tex]A_t=A_0e^{-kt}[/tex]

Where

[tex]A_t[/tex]=Amount of C 14 after “t” year

[tex]A_0[/tex]= Initial Amount

t= No. of years

k=constant

In our problem we are given that [tex]A_t[/tex] is 54% that is if [tex]A_0=1[/tex] , [tex]A_t=0.54[/tex]

Also , k=0.0001

We have to find t=?

Let us substitute these values in the formula

[tex]0.54=1* e^{-0.0001t}[/tex]

Taking log on both sides to the base 10 we get

[tex]log 0.54=log e^{-0.0001t}[/tex]

[tex]-0.267606 = -0.0001t*log e[/tex]

[tex]-0.267606 = -0.0001t*0.4342[/tex]

[tex]t=\frac{-0.267606}{-0.0001*0.4342}[/tex]

[tex]t=6163.20[/tex]

t=6163.20 years