Respuesta :

Since tanΘ = sinΘ / cosΘ:
cos^2
Θ (1 + tan^2 Θ)
= cos^2
Θ (1 + sin^2 Θ / cos^2 Θ)
Distributing:
= cos^2
Θ + sin^2 Θ
By the Pythagorean identity,
= 1

Answer:

The simplified form of the expression is

[tex]\cos^2\theta(1+\tan^2\theta)=1[/tex]

Step-by-step explanation:

Given : Expression [tex]\cos^2\theta(1+\tan^2\theta)[/tex]

To find : The simplification of the expression?

Solution :

Step 1 - Write the expression

[tex]cos^2\theta(1+\tan^2\theta)[/tex]

Step 2 - Using the trigonometric property,

[tex]\tan\theta = \frac{\sin \theta}{\cos\theta}[/tex]

Substitute in place of [tex]\tan\theta[/tex]

[tex]=cos^2\theta(1+(\frac{\sin \theta}{\cos\theta})^2)[/tex]

[tex]=cos^2\theta(1+(\frac{\sin^2 \theta}{\cos^2\theta}))[/tex]

Step 3 - Taking LCM,

[tex]=cos^2\theta(\frac{\cos^2\theta+\sin^2 \theta}{\cos^2\theta})[/tex]

[tex]=cos^2\theta(\frac{1}{\cos^2\theta})[/tex]

Step 4 - Cancel the term

[tex]=1[/tex]

Therefore, The simplified form of the expression is

[tex]\cos^2\theta(1+\tan^2\theta)=1[/tex]