Respuesta :

Louli
Answer:
(f-g) (x) = -x
² + 3x + 7

Explanation:
We are given that:
f (x) = 3x + 1
g (x) = x
² - 6

We want to find (f-g) (x), we can simply obtain the result by subtracting g (x) from f (x) as follows:
(f-g) (x) = f (x) - g (x)
(f-g) (x) = 3x + 1 - (x
²-6)
(f-g) (x) = 3x + 1 - x
² + 6
(f-g) (x) = -x
² + 3x + 7

Hope this helps :)

Answer:

 Option (b) is correct.

[tex](f-g)(x)=-x^2+3x+7[/tex]

Step-by-step explanation:

Given : Functions [tex]f(x) = 3x +1[/tex] and[tex]g(x) = x^2-6[/tex]

We have to choose the correct option from the given options that represents (f-g)(x)

Consider the given functions

[tex]f(x) = 3x +1[/tex] and[tex]g(x) = x^2-6[/tex]

then , (f - g)(x) = f(x) - g(x)

Substitute, we have,

[tex]f(x) - g(x)=3x+1-(x^2-6)[/tex]

Applying plus - minus rule[tex]-(-a)=a[/tex], we have,

[tex]f(x)-g(x)=3x+1-x^2+6[/tex]

Simplify and write in standard form, we have,

[tex]f(x)-g(x)=-x^2+3x+7[/tex]

Thus, The[tex](f-g)(x)=-x^2+3x+7[/tex]