On level ground, a vertical rod 12 feet tall casts a shadow 4 feet long, and at the same time a nearby vertical flagpole casts a shadow 12 feet long. how many feet tall is the flagpole?

Respuesta :

[tex] \frac{Actual}{Shadow} [/tex] = [tex] \frac{Actual}{Shadow}[/tex]
[tex] \frac{12}{4} [/tex] = [tex] \frac{Actual₂}{12} [/tex]
Actual = 36 feet

Answer:

36 feet.

Step-by-step explanation:

We have been given that on level ground, a vertical rod 12 feet tall casts a shadow 4 feet long, and at the same time a nearby vertical flagpole casts a shadow 12 feet long.

To find the length of flagpole, we will use proportions as:

[tex]\frac{\text{Actual length of flagpole}}{\text{Shadow of flagpole}}=\frac{\text{Actual length of rod}}{\text{Shadow of rod}}[/tex]

Substitute given values:

[tex]\frac{\text{Actual length of flagpole}}{12\text{ ft}}=\frac{12\text{ ft}}{4\text{ ft}}[/tex]

[tex]\frac{\text{Actual length of flagpole}}{12\text{ ft}}\times 12\text{ ft}=\frac{12\text{ ft}}{4\text{ ft}}\times 12\text{ ft}[/tex]

[tex]\text{Actual length of flagpole}=12\text{ ft}\times 3[/tex]

[tex]\text{Actual length of flagpole}=36\text{ ft}[/tex]

Therefore, the actual length of flagpole is 36 feet.