Respuesta :
y-y1 = m (x-x1) y+3 = (1/4)(x+4) [using point (x1,y1)] or y–1 = (1/4)(x–12) [using point (x2,y2] [let's use this one since you did] To put this into Standard Form (Ax+By=C), y–1 = (1/4)(x–12) 4y - 4 = x - 12 -x + 4y - 4 = -12 [subtract x from both sides] -x + 4y = -8 [add 4 to both sides] x - 4y = 8 [multiply by (-1) to have x-coefficient positive
Answer:
[tex]x-4y=8[/tex]
Step-by-step explanation:
Given : (–4, –3) , (12, 1)
Solution:
[tex](x_1,y_1)=(12,1)[/tex]
[tex](x_2,y_2)=(-4,-3)[/tex]
Two point slope form : [tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
Substitute the given values.
[tex]y-1=\frac{-3-1}{-4-12}(x-12)[/tex]
[tex]y-1=\frac{-4}{-16}(x-12)[/tex]
[tex]y-1=\frac{1}{4}(x-12)[/tex]
Now standard form of equation of line = [tex]Ax+By=C[/tex]
So, [tex]y-1=\frac{1}{4}(x-12)[/tex]
[tex]4(y-1)=(x-12)[/tex]
[tex]4y-4=(x-12)[/tex]
[tex]12-4=x-4y[/tex]
[tex]8=x-4y[/tex]
[tex]x-4y=8[/tex]
Hence the standard form of the equation for this line is [tex]x-4y=8[/tex]