Answer: Block A has the greatest density.
Explanation:
Density is defined as the mass contained per unit volume.
[tex]Density=\frac{mass}{Volume}[/tex]
To calculate the volume of cuboid, we use the equation:
[tex]V=lbh[/tex]
where,
V = volume of cuboid
l = length of cuboid
b = breadth of cuboid
h = height of cuboid
Putting values in above equation, we get:
a) Block A:
mass = 3 kg
Volume = [tex]2cm\times 4cm\times 6cm=48cm^3[/tex]
[tex]Density=\frac{3kg}{48cm^3}=0.0625kg/cm^3[/tex]
b) Block B:
mass = 1 kg
Volume = [tex]2cm\times 4cm\times 6cm=48cm^3[/tex]
[tex]Density=\frac{1kg}{48cm^3}=0.02kg/cm^3[/tex]
c) Block C:
mass = 2 kg
Volume = [tex]2cm\times 4cm\times 6cm=48cm^3[/tex]
[tex]Density=\frac{2kg}{48cm^3}=0.04kg/cm^3[/tex]
Thus Block A has greatest density.