Respuesta :

well, assuming is not inches, and instead is ln(x).

[tex]\bf \textit{Logarithm Cancellation Rules}\\\\ log_a a^x= x\qquad \qquad \boxed{a^{log_ax}=x}\\\\ -------------------------------\\\\ 6+ln(x)=8\implies ln(x)=2\implies log_e(x)=2 \\\\\\ e^{log_e(x)}=e^2\implies x=e^2[/tex]

Answer:

[tex]x=7.39[/tex]

Step-by-step explanation:

we are given equation as

[tex]6+ln(x)=8[/tex]

Since, we have to solve for x

so, we will isolate x on anyone side

Firstly, we will subtract both sides by 6

[tex]6+ln(x)-6=8-6[/tex]

[tex]ln(x)=2[/tex]

now, we can take exponent of e on both sides

[tex]e^{ln(x)}=e^2[/tex]

now, we can use property of log

and we get

[tex]e^{ln(a)}=a[/tex]

we can use it

[tex]x=e^2[/tex]

So, solution is

[tex]x=7.39[/tex]