Respuesta :
the height of a dam:
h = x + 1.65 m,
where:
x = 90 m · tan 26°
x = 90 · 0.4877
x = 43.90
h = 43.90 m + 1.65 m = 45.55 m
Answer:
The height of the dam is 45.5 m.
h = x + 1.65 m,
where:
x = 90 m · tan 26°
x = 90 · 0.4877
x = 43.90
h = 43.90 m + 1.65 m = 45.55 m
Answer:
The height of the dam is 45.5 m.
Answer:
The height of dam =45.5 m.
Step-by-step explanation:
We are given that Scarlett stands 90 m away from the dam and records the angle of elevation to the top of the dam to be [tex]26^{\circ}p[/tex]
Scarelett's height is 1.65 meters.
We have to find the height of the dam.
Let h be the height of dam
AC=AB+BC
BC=x
h=1.65+x
CD=EB=90 m
In triangle ABE
[tex]\theta=26^{\circ}[/tex]
[tex]tan\theta=\frac{perpendicular\;side}{Base}[/tex]
[tex]tan26^{\circ}=\frac{AB}{90}[/tex]
[tex]0.4877=\frac{x}{90}[/tex]
[tex]x=0.4877\times 90[/tex]
[tex]x=43.893 m[/tex]
Therefore, the height of dam=1.65+43.893=45.543 m
Answer: The height of dam =45.5 m
