The graph shows the function of f(x)=(3.5)^x
Which graph represents the function g(x)=(3.5)^x-1?

Answer:
The graph of the function is the last graph.
Step-by-step explanation:
To know which graph represents the function [tex]g(x)=3.5^{x-1}[/tex] you should give values to x and compare it with the values on the graphs, as follows:
When x=-3
[tex]g(-3)=3.5^{-3-1}[/tex]
[tex]g(-3)=3.5^{-4}[/tex]
[tex]g(-3)=0.007[/tex]
So, the first point is (-3, 0.007)
When x=-2
[tex]g(-2)=3.5^{-2-1}[/tex]
[tex]g(-2)=3.5^{-3}[/tex]
[tex]g(-2)=0.02[/tex]
So, the second point is (-2, 0.02)
When x=-1
[tex]g(-1)=3.5^{-1-1}[/tex]
[tex]g(-1)=3.5^{-2}[/tex]
[tex]g(-1)=0.08[/tex]
So, the third point is (-1, 0.08)
When x=0
[tex]g(0)=3.5^{0-1}[/tex]
[tex]g(0)=3.5^{-1}[/tex]
[tex]g(0)=0.29[/tex]
So, the fourth point is (0, 0.29)
When x=1
[tex]g(1)=3.5^{1-1}[/tex]
[tex]g(1)=3.5^{0}[/tex]
[tex]g(1)=1[/tex]
So, the fifth point is (1, 1)
When x=2
[tex]g(2)=3.5^{2-1}[/tex]
[tex]g(2)=3.5^{1}[/tex]
[tex]g(2)=3.5[/tex]
So, the fourth point is (2, 3.5)
If you compares all the points, the graph of the function is the last graph.