Respuesta :
Simplifying the expression we proceed as follows:
√8×20
=√8×√20
=√(2×4)×√(4×5)
=2√2×2√5
=4√10
Answer: 4√10
√8×20
=√8×√20
=√(2×4)×√(4×5)
=2√2×2√5
=4√10
Answer: 4√10
Answer:
[tex]\sqrt{8 *20}[/tex] = 4 [tex]\sqrt{10}[/tex].
Step-by-step explanation:
Given : [tex]\sqrt{8 *20}[/tex].
To find : Combine and simplify these radicals.
Solution : We have given that [tex]\sqrt{8 *20}[/tex].
We can write 8 as 4 *2 and 20 as 4 *5
Then ,
[tex]\sqrt{8 *20}[/tex] = [tex]\sqrt{(4 *2 )*(4 * 5)}[/tex].
[tex]\sqrt{8 *20}[/tex] = [tex]\sqrt{4 *2}\ *\sqrt{4 *5}[/tex].
[tex]\sqrt{8 *20}[/tex] = 2 [tex]\sqrt{2}\ *2\sqrt{5}[/tex].
[tex]\sqrt{8 *20}[/tex] = 4 [tex]\sqrt{2 *5}[/tex].
[tex]\sqrt{8 *20}[/tex] = 4 [tex]\sqrt{10}[/tex].
Therefore, [tex]\sqrt{8 *20}[/tex] = 4 [tex]\sqrt{10}[/tex].