Respuesta :

△PQR is similar to △STU

m∠R = m∠U = 96°

m∠Q = m∠T = 6

m∠P = 180 - ( 96 + 6)

m∠P = 180 - 102

m∠P = 78
 
answer 

m∠P = 78

Answer:

[tex]m\angle P=12^{\circ}[/tex]

Step-by-step explanation:

Two triangles are similar if their angles are equal one to one.

So:

[tex]m\angle P= m\angle S\\m\angle Q= m\angle T\\m\angle R= m\angle U[/tex]

Also, the problem provided this data:

[tex]m\angle T= 6(m\angle P)[/tex]

As you may know, the sum of the interior angles of a triangle is equal to 180, so:

[tex]m\angle S+m\angle T + m\angle U=180\\\\Where:\\\\m\angle T=6(m\angle P)\\\\So:\\\\m\angle S+6(m\angle P) + m\angle U=180[/tex]

and:

[tex]m\angle P=m\angle S\\\\Hence\\\\m\angle S+6(m\angle S) + m\angle U=180\\\\7(m\angle S) + m\angle U=180\\\\7(m\angle S) + 96=180[/tex]

Solving for [tex]m\angle S[/tex]

[tex]m\angle S =\frac{180-96}{7} =12^{\circ}[/tex]

Since:

[tex]m\angle P= m\angle S=12^{\circ}[/tex]

Therefore [tex]m\angle P=12^{\circ}[/tex]