Respuesta :

AB is proportional to XY since they are similar triangles making it 25:10 or 5:2
so then AC:XZ  would be 5x:2x and 5x:6 so then its 15:6 since x is 3 basically set up proportions and so value of the big triangle to the small triangle would be at rails os 5:2

1. For triangle ABC, the value of 'x' and 'y' are 15 and 20 respectively.

2. For triangle XYZ, the value of 'x' and 'y' are 17 and 8 respectively.

What is a triangle?

A triangle is a two-dimensional geometrical figure that has three sides, three interior angles, and three vertices.

1. ΔABC and ΔXYZ are similar.

Therefore, [tex]\frac{AB}{XY} = \frac{25}{10}[/tex]

⇒ [tex]\frac{AB}{XY} = 2.5[/tex]

Here, [tex]AC = x, XZ = 6[/tex]

Therefore, [tex]\frac{AC}{XZ} = 2.5[/tex]

⇒ [tex]AC = 2.5(XZ)[/tex]

⇒ [tex]x = (2.5)(6)[/tex]

⇒ [tex]x = 15[/tex]

Again, [tex]CB = y, ZY = 8[/tex]

[tex]\frac{CB}{ZY}= 2.5[/tex]

⇒ [tex]\frac{y}{8} = 2.5[/tex]

⇒ [tex]y = (2.5) (8)[/tex]

⇒ [tex]y = 20[/tex]

2. For ΔABC

BC

[tex]= \sqrt{AB^{2} - AC^{2}}\\= \sqrt{34^{2} - 16^{2}}\\= \sqrt{900}\\= 30[/tex](Side can't be negative.)

Here, ΔABC and ΔXYZ are similar.

Therefore,

[tex]\frac{BC}{ZY}\\= \frac{30}{15}\\= 2[/tex]

Now, [tex]AB = 34, XY = x[/tex]

Therefore, [tex]\frac{AB}{XY} = 2[/tex]

⇒ [tex]\frac{34}{x} = 2[/tex]

⇒ [tex]x = \frac{34}{2}[/tex]

⇒ [tex]x = 17[/tex]

Again, [tex]AC = 16, XZ = y[/tex]

Therefore, [tex]\frac{AC}{XZ} = \frac{16}{y} = 2[/tex]

⇒ [tex]\frac{16}{y} = 2[/tex]

⇒ [tex]y = \frac{16}{2}[/tex]

⇒ [tex]y = 8[/tex]

Learn more about a triangle here: https://brainly.com/question/2338119

#SPJ3