Respuesta :

 5x3-4x2-20x+16=0 Three solutions were found : x = 4/5 = 0.800 x = 2 x = -2Reformatting the input :Changes made to your input should not affect the solution:
 (1): "x2"   was replaced by   "x^2".  1 more similar replacement(s).
Step by step solution :Step  1  :Equation at the end of step  1  :  (((5 • (x3)) -  22x2) -  20x) +  16  = 0  Step  2  :Equation at the end of step  2  :  ((5x3 -  22x2) -  20x) +  16  = 0 Step  3  :Checking for a perfect cube : 3.1    5x3-4x2-20x+16  is not a perfect cube 
Trying to factor by pulling out : 3.2      Factoring:  5x3-4x2-20x+16 
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1:  5x3+16 Group 2:  -4x2-20x 
Pull out from each group separately :
Group 1:   (5x3+16) • (1)Group 2:   (x+5) • (-4x)


I hope it helps

Answer:

[tex](5x-4)(x^2+4)[/tex]

Step-by-step explanation:

Consider the given expression

[tex]5x^3-4x^2+20x-16[/tex]

We need to find the factor form of given expression.

Using grouping method we get

[tex](5x^3-4x^2)+(20x-16)[/tex]

Taking out highest common factors from each group.

[tex]x^2(5x-4)+4(5x-4)[/tex]

Taking out common factors.

[tex](5x-4)(x^2+4)[/tex]

Therefore, the factored form of given expression is [tex](5x-4)(x^2+4)[/tex].