Respuesta :

8x - 6 > 12 + 2x
8x - 2x > 12 + 6
6x > 18
x > 18/6
x > 3........so the solution set contains numbers greater then 3....and not including 3....so 4,5,6,7...and so on

Answer:

The solution set is {x|x∈R, x>3}.

Step-by-step explanation:

The given inequality is

[tex]8x-6>12+2x[/tex]

We need to find the x of x for the given inequality.

Subtract 2x from bot sides.

[tex]8x-6-2x>12+2x-2x[/tex]

On combining like terms, we get

[tex](8x-2x)-6>12+(2x-2x)[/tex]

[tex]6x-6>12[/tex]

Add 6 on both sides.

[tex]6x-6+6>12+6[/tex]

[tex]6x>18[/tex]

Divide both sides by 6.

[tex]\frac{6x}{6}>\frac{18}{6}[/tex]

[tex]x>3[/tex]

The value of x is all real numbers which are greater than 3.

Solution set = {x|x∈R, x>3}

Therefore the solution set is {x|x∈R, x>3}.