Respuesta :

use the identity 
sec^2x = 1 + tan^2 x
- so sec x = sqrt(1 + tan^2 x) then:-
tan x + sqrt( 1 + tan^2 x) = 1
sqrt ( 1 + tan^2 x) = 1 - tan x
1 + tan^2 x  = 1 + tan^2x - 2 tan x
0 = -2 tanx 

tan x = 0 

x =  0, π 
π is an extraneous root because sec 180 = -1 
So the answer  is 0 degrees

All the solutions in the interval [0, 2π) for tan x + sec x = 1 is 0.

What are trigonometric ratios?

"Trigonometric ratios are the ratios of the sides of a right angle triangle with respect to any acute angle of the triangle."

Identities used

sec²x -tan²x = 1

According to the question,

Given,

tan x + sec x =1

⇒sec x = 1 - tan x                                         _____(1)

Using trigonometric identity we have,

sec²x = 1 + tan²x

⇒sec x = √ 1+ tan²x                                      _______(2)

Compare (1) and (2) we get,

√ 1+ tan²x  = 1 - tan x

Squaring both the sides  of trigonometric equation we get,

    1+ tan²x  = ( 1 - tan x)²

⇒ 1+ tan²x  = 1+ tan²x -2tanx

⇒  -2tan x = 0

⇒ tan x  = 0

⇒ x = 0, π

But sec π = -1  which is not possible.

So π is extraneous root.

Therefore, x = 0.

Hence,  solutions in the interval [0, 2π) for tan x + sec x = 1 is x= 0.

Learn more about trigonometric identities here

https://brainly.com/question/12537661

#SPJ2