A 30 Ω resistor and a 60 Ω resistor are connected in parallel and placed across a potential difference of 120V. what is the equivalent resistance of the circuit? show work.

Respuesta :

The resistance of a parallel network is given by

[tex]R_{total}= \frac{1}{ \frac{1}{30 \Omega}+ \frac{1}{60 \Omega} } =20 \Omega[/tex]

Here we have to calculate the total equivalent resistance and the expression for work

As per the question the two resistors are connected as parallel in a circuit.

Let [tex]R_{1} = 30[/tex]ohm and [tex]R_{2} =60[/tex]ohm

Let R is the total equivalent resistance

Hence [tex]\frac{1}{R} =\frac{1}{R_{1} } +\frac{1}{R_{2} }[/tex]

                         ⇒  [tex]R=\frac{R_{1}*R_{2}  }{R_{1}+R_{2}  }[/tex]

                                   =  [tex]\frac{30*60}{30+60}[/tex]

                                    =20 ohm

Here the potential difference is given as V=120 volt

Hence the current flowing through the wire is given as

                                   [tex]I=\frac{V}{R}[/tex]

                                        =[tex]\frac{120 volt}{20 ohm}[/tex]

                                         =6 ampere[6A]

   The work done is equal to the electric energy consumed by the circuit.

Let t is the time of consumption .Hence the work done is given as

                           [tex]W=I^{2}Rt[/tex]

                                  =[tex]6^{2} *20*t[/tex] J

                                     = 720t J

Taking various time of consumption we can get the work done