Respuesta :

Answer:

Rate of change of function  [tex]h(x) = 2^x[/tex] on the interval [tex]2\leq x\leq 4[/tex] is; 6.

Step-by-step explanation:

Given the function: [tex]h(x) = 2^x[/tex] on the interval [tex]2\leq x\leq 4[/tex]

Rate of change of function: Let f be the function defined on the interval [tex]a\leq x\leq b[/tex], then the rate of change of function A(x) is given by:

A(x) = [tex]\frac{f(b)-f(a)}{b-a}[/tex]

at x = 2;

h(2) = [tex]2^2= 4[/tex]

and at x = 4

h(4) = [tex]2^4= 16[/tex]

then, by the definition of rate of change of function:

A(x) = [tex]\frac{h(4)-h(2)}{4-2}[/tex]

Substitute the value of h(2) = 4 and h(4) = 16 we have;

[tex]A(x) = \frac{16-4}{4-2}=\frac{12}{2} = 6[/tex]

Therefore, the rate of change of function is 6.

Answer:

The rate of change is 6.

Step-by-step explanation: