Respuesta :

Answer:

1.Javier did not write the coefficient raised to power of 3

2.Javier wrote [tex]x^4[/tex] instead of [tex]x^3[/tex]

3.Javier did divide exponents instead of subtraction of exponents

Step-by-step explanation:

We are given that Javier simplified the expression

[tex](\frac{20x}{5x^8})^{-3}[/tex]

We have to find three mistakes made by Javier.

[tex](\frac{20x}{5x^8})^{-3}[/tex]

[tex]\frac{(20x)^{-3}}{(5x^8)^{-3}}[/tex]

[tex]\frac{(5x^8)^3}{(20x)^3}[/tex]

By using property;[tex]a^{-x}=\frac{1}{a^x}[/tex]

[tex]\frac{125x^{24}}{8000x^3}[/tex]

By using property:[tex](ab)^x=a^xb^x[/tex]

[tex](a^x)^y=a^{xy}[/tex]

[tex]\frac{1}{64}x^{24-3}[/tex]

By using property[tex]\frac{a^x}{a^y}=a^{x-y}[/tex]

[tex]\frac{1}{64}x^{21}[/tex]

Javier made three mistakes are given below:

1.Javier did not write the coefficient raised to power of 3

2.Javier wrote [tex]x^4[/tex]instead of[tex]x^3[/tex]

3.Javier did divide exponents instead of subtraction of exponents.

There are many mistakes which Javier did while simplifying the expression.

Javier simplified the expression but not correctly, there are some mistakes that Javier did while simplifying the expression.

Error 1: [tex]{(5x^8)^3}\neq {5x^{24}}[/tex]

Correction 1: [tex]{(5x^8)^3}= {5^3\times x^{24}}[/tex]

Error 2: [tex](20x)^3\neq 20x^4[/tex]

Correction 2: [tex](20x)^3=20^3\times x^3[/tex]

Error 3: [tex]\dfrac{5x^{24}}{20x^4}\neq \dfrac{x^6}{4}[/tex]

Correction 3: [tex]\dfrac{5x^{24}}{20x^4}= \dfrac{x^{20}}{4}[/tex]

Hence, there are 3 mistakes which Javier did while simplifying the expression.

Learn More about exponential functipons here:

https://brainly.com/question/11487261?referrer=searchResults