Respuesta :

Answer:

Stretched by a factor of 2 and translated 8 units right and 5 units down

Step-by-step explanation:

Given  

[tex]y =\sqrt[3]{8x-64}-5[/tex]

Taking greatest common factor.

[tex]y =\sqrt[3]{8 \times (x-8)}-5[/tex]

Separating the cube root over the multipliers

[tex]y =\sqrt[3]{8} \times \sqrt[3]{x-8}-5[/tex]

[tex]y = 2 \times \sqrt[3]{x-8}-5[/tex]

The parent cube root function is

[tex]y =\sqrt[3]{x}[/tex]

Stretched by a factor of 2 is equal to

[tex]y =2 \times \sqrt[3]{x}[/tex]

Then, translated 8 units right is equal to

[tex]y =2 \times \sqrt[3]{x - 8}[/tex]

Finally, translated 5 units down is equal to

[tex]y =2 \times \sqrt[3]{x - 8} - 5[/tex]  

Transformation involves changing the position of a function.

The parent function is stretched vertically by a factor of 2, shifted right by 8 units, and shifted down by 5 units

The function is given as:

[tex]\mathbf{y=\sqrt[3]{8x-64}-5}[/tex]

A cube root function is represented as:

[tex]\mathbf{y=\sqrt[3]{x}}[/tex]

Multiply by 2

[tex]\mathbf{y=2 \times \sqrt[3]{x}}[/tex]

Express 2 as a cube root of 8

[tex]\mathbf{y=\sqrt[3]{8} \times \sqrt[3]{x}}[/tex]

Combine

[tex]\mathbf{y= \sqrt[3]{8x}}[/tex] ----- this means that the function is stretched vertically by 2

Subtract 8 from x

[tex]\mathbf{y= \sqrt[3]{8(x - 8)}}[/tex] ----- this means that the function is shifted right by 8 units

So, we have:

[tex]\mathbf{y= \sqrt[3]{8x - 64}}[/tex]

Lastly, subtract 5 from the function itself

[tex]\mathbf{y= \sqrt[3]{8x - 64} - 5}[/tex]  ----- this means that the function is shifted down by 5 units

Read more about transformations at:

https://brainly.com/question/11707700