Calculate dy/dx if Ln (x + y) = ex/y

A: e^x/y xy + e^x/y y^2 - y^2
______________________
e^x/y xy + e^x/y x^2 + y2


B: e^x/y xy + e^x/y y^2 - y^2
______________________
e^x/y xy - e^x/y x^2 + y^2


C: e^x/y xy + e^x/y y^2 + y^2
______________________
e^x/y xy - e^x/y x^2 + y^2

D: e^x/y xy + e^x/y y^2 + y^2
______________________
e^x/y xy + e^x/y x^2 + y^2

Respuesta :

Given that ln(x+y)=e^(x/y)

In this case we use the quotient rule on the right hand side where we have an exponent.

1/(x+y)[1+dy/dx]=e^(x/y)[[(y)-x(dy/dx)]/[y^2]]

opening the parenthesis on the RHS

1/(x+y)[1+dy/dx]=e^(x/y)[1/y-(x/y^2)(dy/dx)]

Expanding the left hand side and right hand side
 
1/(x+y)+(dy/dx)[1/(x+y)]=[e^(x/y)]/y-[e^(x/y)](x/y^2)(dy/dx)

next we put like terms together by moving all terms with dy/dx to the LHS and everything else to the RHS.

(dy/dx)[1/(x+y)]+[e^(x/y)](x/y^2)(dy/dx)=[e^(x/y)]/y-1/(x+y)


dy/dx[1/(x+y)+[e^(x/y)](x/y^2)]=[e^(x/y)]/y-1/(x+y)

we can replace e^(x/y) with ln(x+y)

dy/dx[1/(x+y)+[ln(x+y)](x/y^2)]=[ln(x+y)]/y-1/(x+y)

Multiplying both sides by (x+y)(y^2)

dy/dx[y^2+(x+y)ln(x+y)]=y(x+y)ln(x+y)-y^2

dy/dx=[y(x+y)ln(x+y)-y^2]/[y^2+(x+y)ln(x+y)]

This can be written as:
dy/dx=[y(x+y)e^(x/y)-y^2]/[y^2+(x+y)e^(x/y)]
the answer is A]

we are given

[tex]ln(x+y)=e^{\frac{x}{y} }[/tex]

Since, we have to solve for dy/dx

so, we will take derivative with respect to x on both sides

[tex]\frac{d}{dx}\left(\ln \left(x+y\right)\right)=\frac{d}{dx}\left(e^{\frac{x}{y}}\right)[/tex]

Left side:

[tex]\frac{d}{dx}\left(\ln \left(x+y\right)\right)[/tex]

we can use chain rule

u=x+y

[tex]=\frac{d}{du}\left(\ln \left(u\right)\right)\frac{d}{dx}\left(x+y\right)[/tex]

[tex]=\frac{1}{u}\left(1+\frac{d}{dx}\left(y\right)\right)[/tex]

now, we can plug back

u=x+y

[tex]=\frac{1}{x+y}\left(1+\frac{d}{dx}\left(y\right)\right)[/tex]

[tex]=\frac{1+\frac{d}{dx}\left(y\right)}{x+y}[/tex]

Right side:

[tex]\frac{d}{dx}\left(e^{\frac{x}{y}}\right)[/tex]

[tex]=e^{\frac{x}{y}}\frac{y-x\frac{d}{dx}\left(y\right)}{y^2}[/tex]

[tex]=\frac{e^{\frac{x}{y}}\left(y-x\frac{d}{dx}\left(y\right)\right)}{y^2}[/tex]

now, we can set them equal

[tex]\frac{1+\frac{d}{dx}\left(y\right)}{x+y}=\frac{e^{\frac{x}{y}}\left(y-x\frac{d}{dx}\left(y\right)\right)}{y^2}[/tex]

now, we can solve for dy/dx

we get

[tex]\frac{dy}{dx}=\frac{yxe^{\frac{x}{y}}+y^2e^{\frac{x}{y}}-y^2}{y^2+yxe^{\frac{x}{y}}+x^2e^{\frac{x}{y}}}[/tex]..............Answer