Respuesta :

Answer:

Equivalent expression is [tex]x^{\frac{1}{8}}y^{8}[/tex]

Step-by-step explanation:

Given Expression is

[tex](x^{\frac{1}{4}}y^{16})^{\frac{1}{2}}[/tex]

We have to find Equivalent expression to given expression.

using law of exponent , [tex](ab)^x=a^xb^x[/tex]

we get,

[tex]\implies(x^{\frac{1}{4}})^{\frac{1}{2}}(y^{16})^{\frac{1}{2}}[/tex]

now using another law of exponent, [tex](x^a)^b=x^{ab}[/tex]

we get,

[tex]\implies x^{\frac{1}{4}\times\frac{1}{2}}y^{16\times\frac{1}{2}}[/tex]

[tex]\implies x^{\frac{1}{8}}y^{8}[/tex]

Therefore, Equivalent expression is [tex]x^{\frac{1}{8}}y^{8}[/tex]

Answer:

[tex]x^{\frac{1}{8}}y^{8}[/tex]

Step-by-step explanation:

Consider the given expression

[tex](x^{\frac{1}{4}}y^{16})^{\frac{1}{2}}[/tex]

According to the distributive property of exponent,

[tex](ab)^m=a^mb^m[/tex]

Using distributive property of exponent we get

[tex](x^{\frac{1}{4}})^{\frac{1}{2}}(y^{16})^{\frac{1}{2}}[/tex]

Using the property of exponent we get

[tex]x^{\frac{1}{4}\times \frac{1}{2}}y^{16\times \frac{1}{2}}[/tex]           [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]x^{\frac{1}{8}}y^{8}[/tex]

Therefore, the expression [tex]x^{\frac{1}{8}}y^{8}[/tex] is equivalent to the given expression.