Respuesta :

The answer to this question would be:


Ver imagen grace03

Answer:

The given fraction [tex]\frac{x^3-x^2}{x^3}[/tex] reduces to  [tex]\frac{x-1}{x}[/tex]

Step-by-step explanation:

Consider the given fraction [tex]\frac{x^3-x^2}{x^3}[/tex]

We have to reduce the fraction to the lowest terms.

Consider numerator [tex]x^3-x^2[/tex]

We can take x² common from both the term,

Thus, numerator can be written as [tex]x^2(x-1)[/tex]

Given expression can be rewritten as ,

[tex]\frac{x^3-x^2}{x^3}=\frac{x^2(x-1)}{x^3}[/tex]

We can now cancel [tex]x^2[/tex] from both numerator and denominator,

[tex]\Rightarrow \frac{x^2(x-1)}{x^3}=\frac{x^2(x-1)}{x^2 \cdot x}[/tex]

[tex]\Rightarrow \frac{(x-1)}{x^2 \cdot x}=\frac{x-1}{x}[/tex]

Thus, the given fraction [tex]\frac{x^3-x^2}{x^3}[/tex] reduces to  [tex]\frac{x-1}{x}[/tex]