Respuesta :

the answer to that is (x^4 y^6+1)(x^8 y^12-x^4 y^6+1

Answer:

[tex](x^4y^6+1)(x^8y^{12}-x^4y^6+1)[/tex]

Step-by-step explanation:

We have been given an expression [tex]x^{12}y^{18}+1[/tex] and we are asked to factor our given expression.

We will use sum of cubes formula to factor our given expression.

[tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]

Upon using power rule of exponents [tex]a^{bc}=(a^b)^{c}[/tex], we can write:

[tex]x^{12}=(x^4)^3[/tex]

[tex]y^{18}=(y^6)^3[/tex]

We can write 1 as [tex]1^3[/tex] as 1 raised to any power equals 1.

Now we are ready to apply sum of cubes formula.

[tex](x^4y^6)^3+1^3=(x^4y^6+1)((x^4y^6)^2-x^4y^6+1^2)[/tex]

Upon simplifying right side of our equation we will get,

[tex](x^4y^6)^3+1=(x^4y^6+1)(x^{4*2}y^{6*2}-x^4y^6+1)[/tex]

[tex](x^4y^6)^3+1=(x^4y^6+1)(x^8y^{12}-x^4y^6+1)[/tex]

Therefore, after factoring our given expression we get [tex](x^4y^6+1)(x^8y^{12}-x^4y^6+1)[/tex].