An object undergoes acceleration of 2.3i^+3.6j^m/s2 over a 10-s interval. at the end of this time, its velocity is 33i^+15j^m/s. by how much did its speed change

Respuesta :

Answer: 12.99 m/s

Explanation:

Since the acceleration is constant, we can use the following formula for the velocity

[tex]\vec{v}(t) = \vec{a}t + \vec{v}_0[/tex]        (1)

Where:

[tex]\vec{v}(t) = \text{velocity at time }t \newline \indent \vec{a} = \text{acceleration at time }t \newline \indent \vec{v}_0 = \text{initial velocity, i.e., velocity at }t=0 [/tex]

Since at t = 10 s,

[tex]\vec{v}(10) = 33\textbf{i} + 15\textbf{j} \newline \indent \vec{a} = 2.3\textbf{i} + 3.6\textbf{j} [/tex]

the unknown variable in equation (1) is [tex]\vec{v}_0[/tex].

At t = 10 s, equation 1 becomes:

[tex]\vec{v}(10) = 10\vec{a} + \vec{v}_0[/tex]        (2)

By subtracting both sides of equation (2) by [tex]10\vec{a}[/tex], we have

[tex]\vec{v}_0 = \vec{v}(10) - 10\vec{a} \newline \vec{v}_0 = 33\textbf{i} + 15\textbf{j} - 10(2.3\textbf{i} + 3.6\textbf{j}) \newline \vec{v}_0 = 33\textbf{i} + 15\textbf{j} - (23\textbf{i} + 36\textbf{j}) \newline \boxed{\vec{v}_0 = 10\textbf{i} - 21\textbf{j}}[/tex]

Now, we let

v(10) = speed of the object at t = 10
v(0) = speed of the object at t = 0

Recall that speed is the magnitude of the velocity and so

[tex]v(10) = |\vec{v}(10)| \newline \indent \indent = |33\textbf{i} + 15\textbf{j}| \newline \indent \indent = \sqrt{33^2 + 15^2} \newline \indent \boxed{v(10) \approx 36.25} \newline \newline \indent v(0) = |\vec{v}(0)| \newline \indent \indent = |10\textbf{i} - 21\textbf{j}| \newline \indent \indent = \sqrt{10^2 + (-21)^2} \newline \indent \boxed{v(0) \approx 23.26} [/tex]

Hence, the change of speed after 10 s is given by 

[tex]v(10) - v(0) \approx 36.25 - 23.26 \newline \indent \boxed{v(10) - v(0) \approx 12.99} [/tex]